Contents

Foreword
Wikis in Collaborative Learning: Exploring the Role of Authority and Invention vii
BY MARK GUZDIAL

Introduction xiii

1 | The Wiki Principle 1
BY BEAT DÖBELI HONEGGER AND MICHELE NOTARI

2 | Knowledge Construction Using Wikis 21
Theoretical Approaches and Implications for Schools
BY JOHANNES MOSKALIUK

3 | Learning in the Field of Tension between Public Opening and Openness 29
BY SANDRA HOFHUES AND KATHARINA UHL
How to Collaborate Using a Wiki
BY MICHELE NOTARI AND BEAT DÖBELI HONEGGER

Wikis in the Didactics of Science Education
BY KUNO SCHMID AND PAOLO TREVISAN

Using Wikis in Project-Based Learning with Groups of More than 100 Learners
BY MICHELE NOTARI AND STEFAN SCHÄRER

How to Use a Wiki in Primary Education to Support Collaborative Learning Processes
BY MANOLI PIFARRÉ

Using a Wiki for Collaborative Learning at Primary Schools
BY SAMUEL KAI WAH CHU, NICOLE JUDITH TAVARES, CELINA WING YI LEE, AND DAVID WILCK KA WAI LEUNG

Wikis as Learning Management Systems for Computer Science Education in Intermediate and Secondary Schools
BY REBECCA REYNOLDS

Wikis in History Education at the Upper Secondary Level
BY ALEXANDER KÖNIG AND JAN HODEL

The Use of Wikis in German Secondary School Teaching
BY BEAT KNAUS

Using Wikis for School Management
BY NIKLAUS SCHATZMANN

How to Find the Best Wiki for Varying Purposes
BY BEAT DÖBELI HONEGGER AND MICHELE NOTARI

About the Editors

Index
Foreword

Wikis in Collaborative Learning: Exploring the Role of Authority and Invention

I was delighted to be invited to write this invitation to the volume, The Wiki Way of Learning. I have not worked in collaborative learning for several years, so I was pleased that the authors saw useful connections between my work and theirs. I was also delighted to have the opportunity to reflect on our work exploring wikis for learning, with some degree of separation.

Starting Out: Are All Threads Considered Equal?

I became interested in wikis for education as a result of earlier work in collaborative learning. For several years at Georgia Tech, my colleagues and I were exploring a tool called CaMILE (Collaborative and Multimedia Interactive Learning Environment). CaMILE was at first a Macintosh stand-alone application, and later became a web application. Basically, CaMILE supported threaded discussion lists, with some minor supports for multimedia content.

When we moved CaMILE to the Web in the late 1990s, an accident of implementation became an interesting feature to explore. Each individual
threaded discussion had its own unique URL. This feature allowed us to link to a threaded discussion space from any particular content of interest to students. For example, a page describing a homework assignment could be linked to a threaded discussion space for questions and comments about that assignment. In a list of problems for students to use in reviewing for an exam, each problem could be linked to its own threaded discussion space for students to use in collaboratively solving the problem and comparing solutions. We called this “anchored collaboration,” because the collaboration space was anchored to something to talk about. It was unusual in the early days of the Web to think about collaboration spaces linked to items, while it is commonplace today in blogging, and in services such as Reddit and Slashdot.

Jennifer Turns and I did a comparative study of two sets of classes to understand the impact of anchored collaboration. One set of classes used CaMILE with anchored collaborative discussions, and the other set of classes used USENET discussion groups, which were a separate discussion space and not anchored. The USENET discussion groups supported threaded talk, but not tied to any particular topic. The classes we studied were on the same or similar subjects, and were all at the same undergraduate level (e.g., students would take these courses all in their first or second year). What we found was that the anchored discussions tended to be longer (e.g., had more commentators and more notes posted) while still staying on-topic (Gudzial and Turns, 2000). Our claim was that the anchoring helped students to figure out the role for the collaboration, and kept all the related discussion in the same thread. Since we believe in the power of discussion to support learning, we would predict that more discussion on-topic was likely to result in more learning.

But as we analyzed our data, we recognized another important attribute about the anchors. All the anchors were created by the teacher, the authority figure in the course. Only the teacher could create an anchor (something that students cared about, linked from the home page of the course) and link it to some CaMILE discussion. That left us unsure about our claim. The anchored discussions were not just anchored. They were highlighted (by selection and reference) by the teacher. Were the longer, on-topic threads a result of the anchoring, or a result of responding to the recommendations of an authority figure?

Within the technology of CaMILE, there wasn’t an easy way to test the question of anchoring versus authority. But then, my students and I discovered Ward Cunningham’s WikiWikiWeb. Here was a technology in which all authors have the same authority (i.e., all words, all pages, look the same), have the same rights to create pages with the same visibility, and discussions could develop on or around any page. In a wiki, no one can tell if you’re the teacher.
FROM AUTHORITY TO FLEXIBILITY

We started developing the Swiki (Squeak Wiki) in 1997, and Jeff Rick completely rewrote the code and made it his own in the following years. As we used the Swiki in less technical contexts (still many years before Wikipedia and common understanding of a “wiki”), we looked for a name that didn’t involve explaining Hawaiian words. One of the teaching assistants called it a “CoWeb” for “Collaborative Website,” and we used that with our less technical audiences. To all the computer science classes, it was still a “Wwiki.”

We never did try to measure the amount of discussion from teacher-created pages (as anchors for discussions) versus student-created pages, because the answer was obvious from daily use. Discussions created by the teacher were far more likely to be visited and populated than discussions started by students. Students could tell (by tone, by explicit signature, by location in the site) which pages were written by teachers. In fact, most attempts at student-created discussions went without a single response, and those attempts were fairly rare. Our Swikis still reflected the authority structure of the classroom. For the most part, the teacher directed the students’ attention, and the students took those cues to direct their attention.

What we discovered as we made Swikis available across campus was perhaps even more interesting—an enormous diversity of applications were invented by the faculty and teaching assistants around campus (Gudzial, Rick, and Kehoe, 2001). This was a striking result. The history of educational technology development is rife with interventions that don’t get adopted, barely get adopted, or get adopted and used for only a small percentage of their potential applications. The Swikis were not only being adopted across campus, but a surprising variety of applications were invented for their use.

Today, when most people think “wiki” they think “Wikipedia.” Creating an encyclopedia is a clear application for wikis. Our Swiki-using faculty invented such interventions as:

- A glossary of medical terms (e.g., for diseases and for bones in the body), developed across several semesters
- An annotated bibliography for a research group
- Exam review questions with a collaborative space for sharing answers
- A text-based adventure game

Swiki evolved rapidly during the first few years of its use, in response to requests from students, teachers, and teaching assistants (Gudzial, Rick, and Kerimbaev, 2000). We moved away from some of the original WikiWiki ideas. For example, we created the ability for users to “lock” pages (Anyone with a
particular password could unlock and edit the page). That was important, for both students and teachers, so that pages containing details like homework assignment specifications could be trusted as coming only from an authoritative source. In this way, Swiki became a wiki engine designed explicitly for classroom use.

THE DEEPER QUESTION OF WIKIS IN EDUCATION

Studies of educational uses of wikis touch on deep questions about the system and practices of schooling. These questions are not unique to wikis. Wikis serve as a lens to draw attention to these issues.

Philosophers and educational researchers as far back as John Dewey have argued that schooling should be democratic. Dewey argued that a democratic people should express their individuality. Wikis are probably among the most democratic of educational interventions. Anyone can edit any page and say anything. Yet, our experience is that use of wikis still reflected power structures within the classroom. Most classrooms are not democracies—the teacher runs the classroom, and controls what expression can occur. In the Swikis, what the teacher did was more valued than any student’s contribution, and what the teacher posted or created was paid the most attention. It is not really surprising that the technology reflected the classroom structure—wikis are just a technology. They don’t change the nature of students and teachers, but they give us a lens to see it. Is it a problem that classrooms are not more democratic? That question existed before wikis, but wikis make the question more visible.

As an educational technology, wikis are unusual for their rate of adoption and for the creative applications that teachers invented for them. As a contrast, consider that tablet computers are being adopted at a rapid rate today, but new uses are rarely being invented for them. New education applications of tablet computers for learning require literally creating new “apps.” Creating new apps requires knowledge and skill for application development. Wikis can be adapted for new uses with little technical knowledge or skills.

Why do wikis inspire the invention of new applications by teachers? In general, what features of any technology inspire teachers to invent with it? A possibility is that a successfully adapted technology is one that extends an existing pedagogical tool. One of our teachers once called the wiki a “shared whiteboard.” They feel like a familiar medium, with the added advantage of being shared on the Web. Do wikis get adopted for new applications because there is a sense of familiarity about them?

Wikis in their current forms are primarily textual media, and they are inherently public. Everyone can see everyone else’s pages. Uses of wikis in schools, then, are a form of writing across the curriculum. Even if the wiki...
is being used in computer science or engineering classes, its use turns the students’ activities into a public form of communication. Thus, the wiki is a modern Internet technology that serves to enforce some of the oldest goals of liberal education: basic literacy and the ability to communicate to the public.

WHAT WE DON’T KNOW ABOUT WIKIS IN EDUCATION

There is still much to learn about the role of wikis in learning and teaching. Teachers want to know what the best practices are for the use of wikis to support learning in the classroom. What does it mean to teach with a wiki, as an analogy to teaching with a whiteboard or a PowerPoint slide show?

For students, interaction through a wiki is different than other forums for learning. Unlike the classroom, a wiki is a written medium, and is highly distributed. Every enrolled student can be contributing (reading and writing) in the wiki, all at the same time. Students have enormous freedom in the wiki. It’s less structured than even a threaded discussion space. How do students perceive these affordances? Do they use them well in order to support learning? Should we be teaching students how to use a wiki well?

I hope that this book serves as a guide toward some of these questions. The authors of this volume are exploring the range of questions related to how we think about wikis for learning and how to use them well. I am sure that you will come away from this volume with new appreciation for the power of wikis to support education.

REFERENCES

Planning Projects and Solving Problems Collaboratively are crucial skills nowadays, and both require managing the information flood, being able to understand different perspectives, and working with different digital tools. The Wiki Way of Learning focuses on creating and managing learning processes using collaborative technologies. The book provides a theoretical approach along with hands-on examples about how to set up, run, and evaluate collaborative technology-enhanced learning lessons and curricula from the primary school level to adult education.

The introductory chapters focus on the theoretical background of participative technologies, the archetypical properties of wikis for collaboration, and the concept of higher-order learning in the form of knowledge building and learning in the field of tension between open minds and openness in education.

The following chapters underpin and illustrate the theoretical findings with practical examples of different uses of wikis from primary school education to courses on the university level around the world. The book also addresses how wikis can help structure and enhance collaboration in project-based learning settings with over 100 participants, how wikis can be used in German, history and science education, issues of evaluation and assessment.
of student learning in wikis, and what is the added value of the use of a wiki when a whole school uses the same wiki. Practical and pragmatic guidelines are offered addressing these themes. Finally some hands-on hints are given to teachers and lecturers about how to start their projects and lessons using wikis for collaboration.

TARGET AUDIENCE FOR THIS BOOK

The book is aimed primarily at lecturers and teachers at all levels who want to promote collaboration using digital media, and who are looking for inspiration, theoretical backgrounds, successful practical examples, and specific details regarding the design and implementation of technology-enhanced collaboration.
1
The Wiki Principle

WHY ARE WIKIS RELEVANT?

Wikipedia (http://wikipedia.org), Wikileaks (http://wikileaks.org), WikiPlag (http://de.wikiplag.wikia.com/wiki/WikiPlag_Wiki). What began as a tool to document software projects more than fifteen years ago has developed, since that time, into a widespread application for the collaborative creation and editing of texts. Thanks to a few simple basic principles, volunteers can create the world’s largest encyclopedia together, Wikipedia. More and more companies and interest groups are now using wikis or wiki-like tools for the joint preparation of documents.

The first wiki was launched on the Internet by software developer Ward Cunningham in 1995. It was intended to be used for software development, as a documentation tool for design patterns, and became a popular tool in the developer community. The inspiration for the name wiki came from the label “wiki wiki” on the express buses at the Hawaii airport, which means “quickly, quickly” in Hawaiian. Ward Cunningham’s wiki was by far the easiest and fastest tool for editing web pages at that time.

With this quick and easy way of editing web pages, Cunningham fulfilled World Wide Web (WWW) inventor Berners-Lee’s original vision of
collaborative hypertext. At the beginning of his work on the WWW, Berners-Lee had already foreseen that web pages could be both read and edited with a browser (Berners-Lee and Fischetti, 1999). However, in the first phase of the Web, the roles of producing and consuming on the content of web pages continued to be strictly separated.

In retrospect, this first phase of the World Wide Web is now known as Web 1.0. Wikis can be seen as a pioneer and archetype of Web 2.0, which is the second phase of the WWW. In Web 2.0, the roles of producing and consuming content are merged to become “prosuming.” The Internet is increasingly being used as a substitute for local computers and for storage media. Instead of clearly defined programs, services that continuously evolve are used in a network (O’Reilly, 2005). Some experts postulate that these technical changes are accompanied by a cultural shift toward a higher level of cooperation. Don Tapscott and Anthony D. Williams have described such forms of cooperation and its consequences for different areas of business and society in their books Wikinomics (2006) and Macro-Wikinomics (2010).

As regards the significance of the wiki as the archetype of a new tool and a new approach to the Internet, only a small part of this book will be devoted to the concrete wiki tool. Technology and concrete tools are subject to constant change. The initial unique concepts of wikis, meanwhile, have found their way into many other tools and web services. What remains from the concrete tool are the wiki’s inherent universal characteristics, which are very suitable for teaching and learning in an information society, and will be described herein.

WHAT MAKES A WIKI?

In a speech about the design principles of wiki, the wiki inventor Ward Cunningham asked rhetorically: “How can so little do so much?” (Cunningham, 2006). He explained, from his perspective, the design principles of the wiki based on the shortest known program, which implements the basic functions of a wiki in 222 characters of Perl-Code.

```perl
#!/usr/bin/perl
use CGI::all; path_info=~/\w+/;$_='grep -1 $& *.h1($&)
.escapeHTML$t=param(t)
||'dd<$&;open F">$&";print F"$htt\S+\[A-Z]\w+
{2,}/a[href,$&],$/eg;
print header,pre"$_<form">",submit,textarea t,$&.9,70
```

www.alastore.ala.org
This snippet is not easy even for computer scientists to interpret. It visualizes one of the most important wiki features: a reduction to the essentials. With these 222 characters, the basic functions of a wiki are wholly defined.

An easier definition of the wiki for those who are not computer scientists is as follows:

A Wiki is a web service with version control on the Internet, in which everyone can create and modify web pages, link them as hypertexts, and be informed about content changes on request, without additional tools or HTML knowledge. (Based on Döbeli Honegger, 2007)

Currently, over 100 Wiki variants are available. They have inherited most of the basic ideas of Ward Cunningham’s original wiki, but offer more or less degrees of additional functionality, and differ in the technical details that are most relevant to their operation, but not to the use of the wikis. The most common wiki features are:

- **Full-text search.** All pages of a wiki can be searched in full text.
- **Ref-by-function.** On each wiki page, other referenced pages of the wiki are shown.
- **List of changes.** A wiki server delivers a list of the most recently added or modified pages. This information is also available as an RSS feed or by periodic e-mails.
- **Version control.** A wiki server logs every change to a wiki page and provides comparisons between the different versions or lists them on a complete page history.
- **User management.** Some Wiki servers require user registration and record the name of the user who creates or modifies the page.

Wikis and Wiki-Like Tools

Between 1995 and 2000, a wiki was practically the only way to edit a web page directly in the browser. Today, many web services allow the direct manipulation of websites, and are usually even easier to use than traditional wikis. In particular, a class of Wiki-like tools has been developed. These tools largely forego the hypertext functions and instead focus on the work of simple linear texts. Table 1.1 shows the relevant differences between classic wikis and newer wiki-like tools.

Read and Editing Modes

At first glance, a wiki page is hardly different from a traditional website (see figure 1.1). Most of them have a navigation bar with important links on one
TABLE 1.1
Differences between classic wikis and wiki-like tools.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Classic Wikis</th>
<th>Wiki-like Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document structure</td>
<td>Hypertext consisting of multiple documents linked to one another</td>
<td>Single linear document</td>
</tr>
<tr>
<td>Read and edit</td>
<td>Separate</td>
<td>Together</td>
</tr>
<tr>
<td>Versioning</td>
<td>After each save</td>
<td>After each letter typed</td>
</tr>
<tr>
<td>Presentation of page history</td>
<td>Comparison between different versions</td>
<td>Film-like playback of development process</td>
</tr>
<tr>
<td>Dealing with editing conflicts</td>
<td>Preventative hard or soft blocks Attempts to resolve conflict when editing conflict occurs No conflict resolution</td>
<td>No editing conflicts</td>
</tr>
<tr>
<td>WYSIWYG-Editor</td>
<td>Partial</td>
<td>Yes</td>
</tr>
</tbody>
</table>

FIGURE 1.1
A Wiki page in view mode (http://wikiway.ch).

The left sidebar contains important links and the toolbox that allows users to create a new topic, browse the index, search, view changes, settings, and statistics or add the page to the RSS feed. The central part of the page includes the actual content consisting of text, images, or other content. The “Edit”- or “Modify”-buttons at the left top of the page and in the navigation bar at the bottom enable the user to switch from the view to the edit mode (figure 1.2).
edge of the page, with the actual information in the central area of the page. This look is called the view mode.

The page can be recognized as a wiki page only at second glance. Somewhere on the page is a link or button labelled “Modify” or “Edit.” In a classic Wiki, the page will enter an editing mode upon clicking this link or button (see figure 1.2). The first wikis did not have a graphical text editor. All formatting and graphical elements had to be entered with special codes, as shown in figure 1.2. More modern Wikis provide a graphical editing mode, as is common today in various word processing programs (see figure 1.3).

![FIGURE 1.2](http://wikiway.ch).

A wiki page in user mode (http://wikiway.ch).

The center of the page includes the editor, in which the users can modify the content with the help of an integrated text editor. The buttons at the bottom of the page allow the user to save and close with or without notification, to save while editing, to cancel, and to preview the page. The editor used in this example does not provide any graphical editing support (WYSIWYG). The users have to use special codes to enter graphical or formatting elements.
Although most wikis today provide a graphical editing mode, the text editing mode still enjoys great popularity among wiki professionals. Since the main formatting rules are well known and there is little to format, working in the text mode is usually faster, because you can enter the commands using the keyboard and not have to change continuously between the mouse and keyboard.

The editing of a wiki page is completed by storing or discarding the changes made, after which the user is returned to the view mode.

Wiki-like tools usually do not distinguish between these two modes. You are always in the edit mode, and the pages can be modified at any time and by multiple users simultaneously (see figure 1.5).
FIGURE 1.4
Switching between view mode and edit mode in a classic wiki.

FIGURE 1.5
Edit mode of a wiki-like tool.

The graphical editor (WYSIWYG) in the center of the page allows multiple users to simultaneously modify the content with the help of the graphical text-processing functions. Unlike a normal wiki, a Wiki-like tool is always in the edit mode.

Version Management and Editing Conflicts

In a classic wiki, switching between view and edit modes (see figure 1.4) also serves as the basis for version management and for dealing with potential editing conflicts. The active saving system in a classic wiki means that new versions of the page can be stored. With version management, users can go back to each saved version, and can compare several versions of the same page (see figure 1.6).
Wiki-like tools lack not only the switch between viewing and editing modes, but very often also lack an explicit command to save the document. Wiki-like tools automatically save after every single change in the document (i.e., after every single keystroke), but they do not give clear information about when the editing process has been completed. Different wiki-like tools handle this in different ways. While some tools show the history of a document, much like a film playback, others attempt to recognize and display different versions based on temporal interruptions (see figure 1.7).

Since every single letter change is saved by the wiki-like tools and is tracked in the web browsers where the relevant document is displayed, simultaneous editing of the document becomes possible. In classic wikis, editing conflicts occur when multiple users access a document at the same time, because one user’s saving process might overwrite the changes made by another. Classic wikis use different strategies to tackle this problem. Some of them lock the document from further editing when one user enters the edit mode. This prevents an editing conflict, but also rules out the possibility of simultaneous editing. Other classic wikis only warn the users about a possible editing conflict upon saving, and leave the next steps to the users themselves. A third

FIGURE 1.6
Comparison of different versions in a typical wiki.

The page shows a typical feature of version management used to compare different versions of the document stored in the wiki.
The Wiki Principle

Type of classic wiki tries to integrate the changes from different users into the document automatically, while indicating potential conflicts directly.

WHAT MAKES WIKIS SPECIAL?

The program has an attitude. The program wants everyone to be an author. So, the program slants in favor of authors at some inconvenience to readers. (Leuf and Cunningham, 2001)

Just like all tools, Wikis influence our thoughts and actions. Tools do not stipulate that we use them in particular ways, but they would suggest so. We would be reluctant to use a hammer to paint the wall, or a screwdriver to drive in a nail. Similarly, wikis also suggest certain ways of use. Wikis focus more on the content and less on the format of a text. The development process is of equal weight as the result. Wikis emphasize three design principles: simplicity, openness, and user activation (Döbeli Honegger, 2005).

Wikis are simple. The first principle in the invention of wikis was simplicity. Ward Cunningham described wikis as “the simplest functional online database.” With his invention of wikis in 1995, Cunningham massively simplified the editing of web pages and set a
foundation for future online text editors. Wikis require neither special programs nor browser applets, nor detailed technical knowledge such as HTML syntax rules. What they require is only a web browser, which is available on any computer. The graphical editor becomes available by simply clicking a button, and the most essential design options can be defined with only a few special characters.

Wikis are open. The first wiki created by Cunningham did not have any reading or writing restrictions. Cunningham assumed that any possible vandalism in a wiki could be contained easily by the majority of the well-intended users. This has been confirmed, by and large, to this day. Wikis do need to be protected from automatically registered advertisements. This is particularly true for highly exposed wikis such as Wikipedia, which requires additional protection mechanisms. Otherwise, though, an open wiki can be easily operated without the risk of being defaced or abused.

Wikis are welcoming. Wikis are not primarily intended for passive consumption. They encourage visitors to take part in the writing process. This is achieved mainly by the already mentioned design principles of simplicity and openness. Be it a typo on an external page or the submission of your own idea, wikis allow for an immediate correction, or the extension of a text, without facing big hurdles, consent, or preliminary work from a third party. The focus on active participation goes so far in favor of active users that the drawbacks for passive users are tolerated. Due to the additional options for editing and the limited choices of layouts, wiki pages are often less attractive than read-only pages—a wiki feature which is often criticized.

Classic wikis and wiki-like tools differ from other word-processing programs that allow for the creation of perfect-looking documents, due to the fact that classic wikis and wiki-like tools usually place more emphasis on the content and the editing process, rather than the format and the end product.

Wikis are content-focused. You can certainly format and structure texts with a wiki. Headings, as well as numbered and unnumbered lists, are available in practically all wikis, and characters can be made bold or italic. The simple capabilities are there, but so far most wikis do not offer complex formatting or design capabilities, since wikis focus more on the content and less on the format of a text.

Wikis are process-oriented. The link available on each wiki page for editing is an expression of the idea that a text is never finished and can be modified at any time. Version management of wikis provides access to all the development stages of a text, from the beginning to
the current date. In addition, specialized wiki pages, as well as RSS feeds and e-mail alerts, make keeping up with the changes easier.

HYPOTHESES

The references with the numbering system a00000 refer to the hypotheses in “Beats Biblionetz,” http://beat.doebe.li/bibliothek/index.html. Some links lead to sites written in German, while others connect to English articles and references:

- a00618 http://doebe.li/a00618
 Wiki promotes motivation in education and training
- a00619 http://doebe.li/a00619
 Wiki promotes the ability to assume responsibility in education and training
- a00653 http://doebe.li/a00653
 Wiki promotes media competence of students in school
- a00709 http://doebe.li/a00709
 Features of good teaching 02: intensive use of learning time
- a00742 http://doebe.li/a00742
 Revision of texts promotes their quality
- a00732 http://doebe.li/a00732
 Writing on the computer facilitates the revision of texts
- a00890 http://doebe.li/a00890
 Collaborative writing can promote learning
- a00889 http://doebe.li/a00889
 Wiki is very suitable for collaborative writing
- a00984 http://doebe.li/a00984
 Learning is an active process
- a00985 http://doebe.li/a00985
 Learning is a self-directed process
- a00986 http://doebe.li/a00986
 Learning is a constructive process
- a00987 http://doebe.li/a00987
 Learning is a situational process
- a00988 http://doebe.li/a00988
 Learning is a social process
- a01138 http://doebe.li/a01138
 Students write longer texts on a computer than by hand
- a01139 http://doebe.li/a01139
 Writing on the computer can promote motivation in writing
B
Baker, M. J., 42
Barron, B., 110
Bartlett, Frederic, 22
Battle of Verdun, 132
Bereiter, C., 24
Berners-Lee, Tim, 1–2
Bernsen, D., 130
Bianco, T., 36
Boxnet, 78
Bremer, C., 14
Brown, J., 24
Bruckman, A., 36
Bruner, J., 14, 48
BSCW, 78

C
CaMILE (Collaborative and Multimedia Interactive Learning Environment), vii–viii
Chan, C. K. K.
on integration of Web 2.0 technologies into education, 97
on knowledge building, 111
chat, 71
Chellappa, Ramnath K., 47
choice
See wiki, choice of
Chu, Samuel Kai Wah
on benefits of wiki, 98
findings in study by, 103
on integration of Web 2.0 technologies into education, 97
“Using a Wiki for Collaborative Learning at Primary Schools,” 97–106
on wiki use in primary school, 105
classic wiki
choice of, 160–161
criteria for selection of, 162–163
wiki in LMS or separate
wiki, choice of, 161
closed wikis
benefits of for students, 36–37
use of in classroom, 34–35
cloud computing, 47
clusters, 144
Cobb, Paul, 110
coefficient of variation (CoV), 77
coevolution, 25–26
"Cognitive Apprenticeship" (Collins, Brown, & Newman), 24
cognitive conflicts, 22–23
cognitive schemata
in knowledge space, 25
Piaget’s theory of, 22–23
Cole, M., 81
collaboration
ABAHCCOCOSUCOL for optimizing, 42–44
CaMILE for anchored collaboration, vii–viii
collaborative interpretation of sources/reconstruction of history, 130–131
collaborative learning scenarios using wikis, 48–50
conclusion about, 51
design of educative project for collaborative learning, 85–92
educative project that uses wikis in primary education, 85–92
English collaborative writing, wiki use in, 101–104
evaluation of quality of wiki collaborative texts, 94
as focus of wiki, 13
knowledge building and, 111–112
in primary education with wiki use, 82–85
process by students in wiki environment, 92–94
progressive inquiry model for, 44–45
structured, usefulness of, 41–42
wiki group work in science education course, 56
wikis for collaborative creation, 1–2
wikis for general studies group project work, 99–101
wikis for learning, 45–48
work groups for Nature—Man—Contemporaries course, 60–61
Collaborative and Multimedia Interactive Learning Environment (CaMILE), vii–viii
collaborative glossary
creation of, 49
visualization of with DPM, 50
Collins, A., 24
comparison phase, 42–43
computer science education
background of, 110–112
discussion about wiki LMS, 123–126
program overview, 109–110
results of, 118–123
wikis as LMS platform, 112–118
computer-supported collaborative learning (CSCL), 41–42, 48
concept
discussion page of concept site, 70
for project, formulation of, 69
Coniam, D.
on benefits of wiki, 97
on revision of content, 14
on version control, 15
constructionism, 110–111
constructivism
learning as social process, 23–24
Piaget’s theory of, 22–23
content
inquiry web-based methodology
for learning about, 88
links as hypertexts, 14
potential of wikis for learning, 13
revision of content with wiki, 13–14
version control and, 15
wiki as content-focused, 10, 48
cooperation
in Nature—Man—Contemporaries course, 62
rules for cooperative learning, 60
See also collaboration
course presentation, 57–58
CoV (coefficient of variation), 77
Cress, U., 21–22, 25
criticism
student assessment of classmates’ work, 36
of wikis, 15–17
CSCL (computer-supported collaborative learning), 41–42, 48
cumulative talk, 83
Cunningham, Ward
description of wikis, 47, 48
on design principles of wiki, 2–3
first wiki launched by, 1–2, 33
invention of wikis, 45
on simplicity of wiki, 9–10
on wikis’ slant toward authors, 9
WikiWikiWeb, viii
curriculum, design for collaboration, 42–44
D
Darling-Hammond, L., 110
Dawes, L.
on exploratory talk, 83
ground rules for productive/reasoned dialogues, 83–84
“Thinking Together” program, 86
De Witt, C., 35
Deci, E. L., 26, 36
democracy, x
design principles, 9–11
Désilets, A., 45
Dewey, John, x
dialogic space
development of, 82
widening of, 94
wikis for creation of, 95
wikis open up, 97
dialogues
argumentation in online dialogues, 84–85
exploratory talk, 82–83
ground rules for productive/reasoned dialogues, 83–84
thinking together/face-to-face collaborative skills, 86–88
with Web 2.0 technologies, 81
See also discussion
didactic process map
 icons of, 67
 of media-pedagogy curriculum, 66
digital blackboard
 analysis of feedback texts on, 145
 benefits of, 143–144
digital museum, 146
digital work journal, 142
Dillenbourg, P.
 on collaborative learning, 41–42
 Concept-Grid, 48
disciplinary development, 57–58
discussion
 forums for emerging issues in teaching/training, 61–62
 teacher-created/student-created, ix
 See also dialogues
Disessa, Andrea A., 110
disputational talk, 82–83
Döbeli Honegger, Beat
 on access protection for wiki, 34
 collaborative glossary, 48
 definition of wiki, 3, 12
 “How to Collaborate Using a Wiki,” 41–51
 “How to Find the Best Wiki for Varying Purposes,” 159–165
 on openness of wiki, 33
 on wiki design principles, 9
 “The Wiki Principle,” 1–18
 wikis for learning, 45
DokuWiki, 163
Dropbox, 78

E
Ebersbach, A., 33, 34
editing
 classic wiki vs. wiki-like tool, 160–161
 collaborative, with wikis, 47
 conflicts in wikis/wiki-like tools, 7–9
 modes of wikis, 3–7
 revision of content with wiki, 13–14
 special wiki characteristics for, 9–11
 student editing behavior in wiki, 75–77
 wiki use in project-based media course, 71–72
editorial wiki, 144–145
Educnet, 78
education
 Web 2.0 integration with, 97–98
 wikis in, questions about, x–xi
 See also learning
education for sustainable development (ESD), 58
educative project, 85–92
English collaborative writing
 instructional design, 101–102
 students’ perceptions of, 103–104
Engstromm, M. E., 98
environment, 25
EtherPad, 160
exploratory talk
 ground rules for productive/reasoned dialogues, 83–84
 promotion of, 82–83
external projects
 as mature products, 141
 of secondary school German class, 145–148
externalization, of knowledge, 25

F
Facebook, 156
face-to-face collaborative skills
 description of, 86–88
 in educative process, 85
feedback
 in ABAHCOUCOSUL, 42–43
 in English collaborative writing, 103, 104
 in internal German class project, 144, 145
 in Nature—Man—Contemporaries course, 60, 61
 in professional development workshop, 102
 in project-based media course, 78–79
 wiki group work in science education course, 56
Fend, H., 29, 32
Fischer, R., 91
Fischetti, M., 2

www.alastore.ala.org
INDEX / 173

Fleiter, E., 130
fluid text, 140
Fong, Chi Sun, 97–106
format
 layout of wikis, 15–16
 of wikis, 10
Forte, A., 36
FosWiki, 163
free wikis, 164–165
full-text search, 3
Fung, K. Y., 98, 105

G
game design program
 background of, 110–112
 discussion about, 123–126
 program overview, 109–110
 results of, 118–123
 wikis as LMS platform, 112–118
Gautschi, P., 134–135
general studies
 conclusion about wikis for, 62–63
 course with wiki group work, 56
 group project work, 99–101
 motives for use of wiki, 57
 pedagogy of, 55–56
 projects of work groups, 60–61
 various uses of wiki, 57–62
general studies teacher, 99
German Education Council, 33
German secondary school teaching, wiki
 use in
 benefits of, 140
 external projects, 145–148
 internal projects, 141–145
 requirements for, 140–141
 wiki, concept of, 139
Glaser, M.
 on access protection for wiki, 34
 on openness of wiki, 33
Globaloria
 background, 110–112
 discussion about wiki LMS, 123–126
 implementation of wiki-based LMS, 113
 knowledge-building aim of, 112
 program overview, 109–110
 replication/administration, 113–114
 research on wiki LMS uses, 117–118
 results of, 118–123
 role of, 112–113
 wiki-based LMS content/features, 114–117
Globerson, T., 112
glossary, collaborative, 49–50
GNU Free Documentation License, 33
Google Analytics
 assessment of wiki LMS use, 123–126
 EtherPad in, 160
 to investigate student wiki uses, 110
 research on wiki LMS uses, 117–118
 for wiki-based LMS, 113
Google Doc, 143
Google Sites
 benefits of use for students, 106
 for English collaborative writing, 101–104
 for general studies group project work, 99–101
 for wiki platform in Hong Kong primary schools, 98–99
Grafe, S., 37
Grant, L.
 on planning for public wikis, 35
 on student criticism, 36
 on wisdom of crowds, 33
Grell, P., 36
ground rules, 83–84
group interaction, 101
group work, 129–130
Gupta, Alok, 47
Guzdial, Mark
 Foreword, vii–xi
 on wikis for learning, 12, 45
H
Habermas, J., 31
Hakkarainen, K., 44–45
Hallitzky, M., 32, 33
Handbook of Google Sites (Chu, Law, et al.), 99
“hands on” activities, 65, 66, 68–69

www.alastore.ala.org
Harel, I., 110, 111
Heigl, R.
on access protection for wiki, 34
on openness of wiki, 33
Helmke, A.
on learning with wiki, 13
on time spent on wiki task, 48
Herzig, B., 37
Heuer, C., 135
history education
 collaborative interpretation of sources/reconstruction of history, 130–131
 conclusion about, 134–135
 virtual preparation for history learning outside school, 132
 wikis, potentials for, 133
 wikis for, 129–130
Hmelo-Silver, C., 112
Hodel, Jan, 129–135
Hofhues, Sandra
 on change of teaching, 30
 “Learning in the Field of Tension between Public Opening and Openness,” 29–37
 on validation function of publicness, 31
home page, 58–59
Hong, F.
on collaborative learning, 41–42
 Concept-Grid, 48
Hong Kong
 English collaborative writing, 101–104
 general studies group project work, 99–101
 wikis in primary schools in, 98–99
hosting, of wiki, 163–164
“How to Collaborate Using a Wiki” (Notari & Döbeli Honegger), 41–51
“How to Find the Best Wiki for Varying Purposes” (Döbeli Honegger & Notari), 159–165
“How to Use a Wiki in Primary Education to Support Collaborative Learning Processes” (Pifarré), 81–95
HTML, 15
hypertexts
 ABAHCOCOSUCOL as method for collaboration, 42–44
 advantage of wikis for, 51
 links as hypertexts, 14
 hypotheses, 11
I
iBoard, 143–144, 145
ICT (information and communications technology)
 increased use of at school, 152
 for posters/talks, 71
 skills needed for wiki project, 99
 wiki project for access to, 62
 wiki use in secondary schools and, 140
 ideas, generation of, 92–93
 image sources, 131
information resources
 of Globaloria, 115
 research on wiki LMS uses, 118
 results of wiki LMS, 120–121
information space, 25–26
inquiry, 44–45
inquiry web-based methodology, 85, 88
instructional design
 for English collaborative writing, 101–102
 for general studies group project work, 99–100
 for project-based media learning course, 66
 instructions, in wiki space, 89
 interface language, of wiki, 162
 internal wiki projects, 141–145
 internalization, of knowledge, 25
Internet
 access to wiki with, 15, 47
 wiki history and, 1–2
 interpretation, 130–131
 intrinsic motivation, 26–27
Iske, S., 47
IT teacher, 99
Jermann, P., 42
Jewett, D., 98

Keep it short and simple (KISS), 140–141
Kehlmann, Daniel, 147
Kehoe, Colleen
on Swiki, ix
on wikis for learning, 12, 45
Kennedy, D. M., 97
Kerimbaev, Bolot, ix
Kerres, M., 35
Kimmerle, J.
on knowledge construction
with wikis, 25
on links as hypertext, 14
model of, 21–22
KISS (Keep it short and simple), 140–141
Kleine Staarman, J., 81, 97
Knaus, Beat, 139–148
knowledge building
wiki for education and, 111–112
with wiki LMS, 109
“Knowledge Building” (Scardamalia & Bereiter), 24
knowledge construction
as coevolution, 25–26
constructivist use of term, 22
learning as social process, 23–24
motivation/interest in, 26–27
overview of, 21–22
Piaget’s theory of, 22–23
“Knowledge Construction Using Wikis” (Moskaluk), 21–27
knowledge sharing, 111–112
knowledge space, 25–26
Kochan, B., 13
Köcher, R., 29, 30
Konieczny, P., 35, 36
König, Alexander
collaborative interpretation of
sources/reconstruction
of history, 131
on history education, 130

“Wikis in History Education at the Upper Secondary Level,” 129–135
Krapp, A., 26

Lakkala, M., 44–45
language
exploratory talk, 82–83
ground rules for productive/reasoned dialogues, 83–84
interface language of wiki, 162
potential of wikis for learning, 13
revision of content with wiki, 14
“sentence openers,” 84–85
version control, 15
for wikis in Hong Kong primary schools, 98
Larusson, J. A., 112
Law, Andy Ho Cheung
recommendations on wiki use in primary school, 105
“Using a Wiki for Collaborative Learning at Primary Schools,” 97–106
Law, Olivia Kwan Lam, 97–106
learning
as active construction of knowledge, 22
cognitive schemata and, 22–23
collaborative learning scenarios using wikis, 48–50
curriculum design for collaboration, 42–45
educative project that uses wikis in primary education, 85–92
general studies group project work, perceptions of, 100
learning process analytics for project-based learning course, 79–80
opening-up of schools and, 30–33
openness as wiki principle, 33–35
peer learning in English collaborative writing, 103
schools, public image/self-image of, 29–30
as social process, 23–24
structured collaboration for, 41–42

www.alastore.ala.org
learning (cont.)
Web 2.0 brings new possibilities for, 81
wikis for, 12–15
wikis for collaborative learning, 45–48
wikis in public teaching-learning settings, potentials/challenges of, 34–37
"Learning in the Field of Tension between Public Opening and Openness" (Hofhues & Uhl), 29–37
learning management system (LMS)
background, 110–112
discussion about wiki LMS, 123–126
program overview, 109–110
results of, 118–123
wiki in LMS or separate wiki, choice of, 161
wikis as LMS platform, 112–118
Lee, Celina Wing, 97–106
Leuf, B.
description of wikis, 47
invention of wikis, 45
on wikis’ slant toward authors, 9
Leung, David Wilck Ka Wai, 97–106
lexicon, lyric, 146
Li, X. X., 97
links, 14
list of changes, 3
Littleton, K., 83–84
LMS
See learning management system
Luhmann, N., 21, 25–26
Lund, K., 42
lyric lexicon, 146

M
Macro-Wikinomics (Tapscott & Williams), 2
Mak, B.
on benefits of wiki, 97
on revision of content, 14
on version control, 15
Maletzke, G., 29
Mandl, H., 12
Marotzki, W., 47
Mathenson, M. P., 84
Means, B., 126

media education
links as hypertexts, 14
potential of wikis for learning, 13
project-based media learning course, 65–80
MediaWiki
features of, 163
Globaloria built on, 109, 110
Globaloria implementation of wiki-based LMS, 113
for history education wiki, 130
Mercer, N.
exploratory talk, 82–83
ground rules for productive/reasoned dialogues, 83–84
“Thinking Together” program, 86, 95
Meyer, H.
history education wiki, 130
on learning with wiki, 13
on time spent on wiki task, 48
milestones
deadlines for, 72
for project work, 69
in project-based media course, 78–79
mind-maps
in English collaborative writing, 101–102
for ideas for text, 144
Moskaliuk, Johannes
“Knowledge Construction Using Wikis,” 21–27
on learning, 12
on links as hypertext, 14
on open/closed wiki, 33, 34
motivation
general studies group project work, perceptions of, 100
for knowledge construction, 26–27
of learners with wiki, 140
for wikis in science education course, 57
multimedia integration, 162
Muukkonen, H., 44–45
N
“Nature—Man—Contemporaries” course, Solothurn University of Education, 55–63
negotiation space
 collaborative work of students in, 95
 in generation of ideas phase, 92
 in text drafting, 93
 in wiki writing space, 90
Neidhardt, F., 31
Neuen Kantonsschule Aarau, 146
Neuen Leiden des jungen W. (Plenzdorf), 147
Newman, S., 24
Notari, Michele
 on ABAHCO COSUCOL, 42, 44
 collaborative glossary, 48, 49–50
 “How to Collaborate Using a Wiki,” 41–51
 “How to Find the Best Wiki for Varying Purposes,” 159–165
 “Using Wikis in Project-Based Learning with Groups of More than 100 Learners,” 65–80
 “The Wiki Principle,” 1–18
 on wikis for learning, 12, 45
Nuremberg funnel, 22

O
Oelkers, J., 30, 32
openness
 of learners/teachers, 32–33
 opening-up of school, 30–33
 risk of vandalism with, 16–17
 as wiki principle, 33–35
 of wikis, 10
 wikis for collaborative learning, 47–48
 wikis in public teaching-learning settings, potentials/challenges of, 34–37
opinions, 31
O’Reilly, T., 2
organization, 12
Osman El-Sayed, R., 13
outline
 approval of by teacher, 69
 of planned project on wiki, 66

P
page views
 information resource use features, 120–121
 research on wiki LMS uses, 117–118
 social media features, results of wiki LMS, 119–120
 wiki use in project-based media course, 71–75
Papert, S., 110, 111
Paquet, S., 45
parental concerns, 105
Paus-Hasebrink, I., 13
PBL (project-based learning), 78
peer learning, 103
Pelka, B., 36
Perkins, D., 112
personal homework wiki, 142
photos
 student photos on school wiki, 154
 wiki as school photo database, 156–157
Piaget, Jean
 constructivist theory of, 21, 22–23, 110
 constructivist view, 12
Pifarré, Manoli
 on benefits of wiki, 97
 “How to Use a Wiki in Primary Education to Support Collaborative Learning Processes,” 81–95
 on inquiry web-based activities, 88
 on student writing, 91
plain text editors, 160–161
Plenzdorf, Ulrich, 147
plug-ins, 162
presentation, of projects, 71
primary education, wiki use in
 argumentation in online dialogues, 84–85
 collaboration process by students, 92–94
 conclusion about, 95
 design of educative project for collaborative learning, 85–92

www.alastore.ala.org
primary education (cont.)
dialogues with Web 2.0
technologies, 81
evaluation of quality of wiki
collaborative texts, 94
“exploratory talk,” 82–83
ground rules for productive/
reasoned dialogues, 83–84
primary schools, wiki for collaborative
learning at
benefits of wikis in education, 97–98
correlation about, 106
English collaborative writing, 101–104
general studies group project
work, 99–101
recommendations for primary
school educators, 105
wikis in upper primary
classrooms, 98–99
process, 10–11, 48
professional development workshops, 102
profile page
views per students, 119
of wiki LMS, 118
progressive inquiry model
for optimizing collaboration, 44–45
use of, 51
project groups
editing behavior within, 77
page views per, 73
project work by, 69–71
for project-based media learning
course, 65, 68–69
project management features, of
Globaloria, 115
project page
views across time, 120
of wiki LMS, 118
project work
in project-based media course, 69–71
time spent on, 78
project-based learning (PBL), 78
project-based media learning course
conclusions about, 78–80
didactic process map for, 66
didactic process map, icons of, 67
experiences with, 71
“hands on” activities, 66, 68–69
instructional design, 66
overview of, 65
project work, 69–71
usage of wiki, quantitative
analysis of, 71–77
project-description page
template of, 70
template proposal for, 69, 71
public, 30–33
public image, 29–31
publicness
meaning of, 31
open/closed wikis, 33–35
wikis in public teaching-
learning settings, potentials/
challenges of, 34–37

Q
Quality Education Fund, 98
questions
virtual preparation for history
learning outside school, 132
for wiki choice, 160

R
Rau, F., 36
Ravenscroft, A., 84
read mode, 3–7
reasoning connectors, 94
ref-by-function, 3
Reinmann, G., 12, 36
renting, wiki, 164
replication, 113
research
English collaborative writing,
wiki use in, 101–104
general studies group project
work, 99–100
on wiki LMS uses, 117–118
revision
of content with wiki, 13–14
control with wiki, 47
Reynolds, Rebecca
on constructionism, 112

Rheinsberg (Tucholsky), 147
Richardson, W., 48, 97
Rick, Jeff, ix
Rick, Jochen
on Swiki, ix
on wikis for learning, 12, 45
rights, allocation of, 140–141
Risse, E., 33
Ruhm (Kehlmann), 147
rules
ground rules for productive/reasoned dialogues, 83–84
for participation in wiki, 92
for work groups, 60
Rumelhart, D., 22
Ryan, R. M., 26, 36

S
Salomon, G., 112
Sauer, M., 130
scaffolding
of curriculum for collaboration, 42–45, 51
in project-based media course, 78
wikis as LMS platform, 112
Scardamalia, M.
on knowledge building, 24
principles of knowledge building, 111, 112
Schärer, Stefan, 65–80
Schatzmann, Niklaus, 151–157
Schaumberg, H., 13
Schein, E. H., 29
Schiefner-Rohs, M., 36
Schmid, Kuno
on good learning tasks, 60
“Wikis in the Didactics of Science Education,” 55–63
Schmidt, J., 34
school management, wikis for
conclusion/outlook for, 156–157
definitions, problems of, 153–154
first wiki experiences, 152–153
simple web concept plan for secondary school, 154–155
starting point, 151–152
schools
opening-up process, 30–33
openness as wiki principle, 33–35
public image/self-image of, 29–30
wikis in public teaching-learning settings, potentials/challenges of, 34–37
Schulmeister, R., 14
science education
conclusion about, 62
course with wiki group work, 56
motives for use of wiki, 57
pedagogy of general studies, 55–56
wiki, various uses of, 57–62
wiki networks created during semester, 63
scripting, 42–43
secondary school, 151–157
See also German secondary school teaching, wiki use in;
history education; learning management system
Seibert, N., 32, 33
self-efficacy, 36
self-hosting, 163–164
self-image, 29–30
“sentence openers”
as aid in wiki, 91
eamples of, 85
for improving discussion, 87
use of, 84
server, 162
simplicity, 9–10
Sintonen, M., 44–45
SMS (Short Messages sent over mobile phone), 71
social constructivism, 110–111
social media features
of Globaloria, 115
research on wiki LMS uses, 118
results of wiki LMS, 118–120
society, 23–24
Soller, A. L., 42
Solothurn University of Education, Switzerland, 55–63
sources
 collaborative interpretation of, 130–131
 student interpretation of, 134
Spahn, T., 130
Stager, G., 110
structure, for collaboration, 41–42
students
 collaboration process by students in wiki environment, 92–94
 collaborative writing of history wiki, 134–135
 criticism of wikis and, 15–17
 curriculum design for, 42–45
dialogues, ground rules for, 83–84
educative project that uses wikis in primary education, design of, 85–92
English collaborative writing, perceptions of, 103–104
exploratory talk, 82–83
general studies group project work, perceptions of, 100–101
home page for Nature—Man—Contemporaries course, 58–59
interaction through wiki, xi
motivation for wikis in science education course, 57
openness of wiki and, 33–35
potential of wikis for learning, 12–15
research on wiki LMS uses, 117–118
wiki use in project-based media course, 71–77
wikis in education, benefits of, 97–98
wikis in public teaching-learning settings, potentials/challenges of, 34–37
Suthers, D., 42
Swiki (Squeak Wiki), ix–x
system theory, 25

T
Tapscott, Don, 2
Tavares, Nicole Judith
 study on English collaborative writing, 98
 “Using a Wiki for Collaborative Learning at Primary Schools,” 97–106
teacher librarian, 100
teachers
 administrative rights for wiki, 141
 criticism of wikis and, 15–17
 curriculum design for collaboration, 42–45
 of English collaborative writing, 102
 general studies group project work, perceptions of, 100–101
 internal German class project, 142
 opening-up of school and, 32
 openness of wiki and, 33–35
 position of with wiki use, 140
 potential of wikis for learning, 12–15
 recommendations on wiki use in primary school, 105
 results of wiki LMS, 122–123
 school image and, 30
 school wiki and, 156
 self-hosting of wiki and, 164
 Swiki interventions, ix
 training for wiki LMS use, 123–124
 wiki use for history education and, 134–135
 Wikipedia articles, requirements for, 147, 148
 wikis, use of in education, x–xi
 wikis in education, benefits of, 98
 wikis in public teaching-learning settings, potentials/challenges of, 34–37
 teacher’s hub wiki platform, 113–114
team page
 views across time, 120
 of wiki LMS, 118, 119
technological support, 105
 technology in English collaborative writing, 103

www.alastore.ala.org
general studies group project
work, perceptions of, 101
See also ICT (information and communications technology)
text, 16
text drafting, 93
text generation, 93
texts, 144–145
Theodor-Heuss-Gymnasium in Sulzbach (Saar, Germany), 130–132
thinking together
description of phase in educative project, 85–88
effectiveness of, 95
"Thinking Together" program
exploratory talk in, 83, 84
tinking together/face-to-face collaborative skills, 86–88
threaded discussion, vii–viii
Tiwari, A. F. Y., 97
trace log data reporting, 124
Treasure-Jones, T., 42
Trevisan, Paolo, 55–63
Tucholsky, Kurt, 147
t-unit, 94
Turns, Jennifer, viii
Twitter, 156

V
vandalism, 16
Veerman, A. L., 42
version control
as common wiki feature, 3
contribution to learning process, 14–15
version history, 141
version management
access to all development stages with, 10
in wikis/wiki-like tools, 7–9
view mode
switching between, 7
wiki page in, 4–5
Vinson, N., 45
visualization element, 79–80
Vygotsky, L. S.
constructivist view, 12
on learning as social process, 23–24
social constructivism, 110
theory of, 21

W
Wahl, D., 132
Warschauer, M.
on revision of content, 14
on writing motivation with wiki, 13
Web 2.0
dialogic perspective for, 81
integration into education, 97–98
wikis as pioneer of, 2
web concept plan, 154–155
WebQuest activity, 88
website
school website/wiki, problems of definition, 153–154
of secondary school, 151–152
web concept plan for secondary school, 154–155
webwidgets, 79–80
Wegerif, R.
on exploratory talk, 83
ground rules for productive/reasoned dialogues, 83–84
Wegerif, R. (cont.)
 on learning culture, 81
 “Thinking Together” program, 86
Weinberger, A. L., 42
wiki, choice of
 classic wiki or wiki-like, 160–161
 criteria for selection of wiki, 162–163
 free wikis, 164–165
 recommendations for, 105
 self-hosting, 163–164
 spoiled for choice, 159–160
 wiki in LMS or separate wiki, 161
 wiki renting, 164
wiki, for collaborative learning at primary schools
 benefits of wikis in education, 97–98
 conclusion about, 106
 English collaborative writing, 101–104
 general studies group project work, 99–101
 recommendations for primary school educators, 105
 wikis in upper primary classrooms, 98–99
“The Wiki Principle” (Döbeli Honegger & Notari), 1–18
wiki syntax, 134
The Wiki Way of Learning (Notari, Reynolds, Chu, & Döbeli Honegger)
 Foreword, vii–xi
 Introduction to, xiii–xiv
wiki-like tools
 choice of, 160–161
 classic wikis vs., 4
 development of, 3
 edit mode in, 6, 7
 editing process in, 8
Wiki-Media engine, 88–92
Wikinomics (Tapscott & Williams), 2
Wikipedia
 collaborative creation of, 1
 external projects of secondary school German class, 146–148
 MediaWiki and, 113, 130, 163
 protection mechanisms for, 10
 protection of, 10
 relevancy of wikis, 1
 student learning about, 134
 vandalism in, 47
wikis
 CaMILE, vii–viii
 choice of, 105
 cognitive schemata and, 23
 collaborative learning scenarios using wikis, 48–50
 criticism of, 15–17
 definition of, 2–3
 in education, benefits of, 97–98
 in education, questions about, x–xi
 educative project that uses wikis in primary education, 85–92
 evaluation of quality of wiki collaborative texts, 94
 features of, 3
 for game design program, 109–110
 game design program, background of, 110–112
 in German secondary school teaching, 139–148
 for history education, 129–135
 hypotheses, 11
 knowledge construction as coevolution, 25–26
 knowledge construction with, 21–22
 for learning, 12–15, 45–48
 learning as social process, 24
 as learning management system platform, 112–118
 motivation/interest in knowledge construction with, 26–27
 openness as principle of, 33–35
 in project-based media course, 78–80
 in project-based media learning course, 71–77
 in public teaching-learning settings, 34–37
 read/editing modes, 3–7
 relevancy of wikis, 1–2
 in science education course, 55–63
 special characteristics of, 9–11
 Swiki, development of, ix–x

www.alastore.ala.org
version management/
editing conflicts, 7–9
Wiki-Media engine, 88–92
wikis/wiki-like tools, 3, 4
“Wikis as Learning Management Systems for Computer Science Education in Intermediate and Secondary Schools” (Reynolds), 109–126
“Wikis in History Education at the Upper Secondary Level” (König & Hodel), 126
“Wikis in the Didactics of Science Education” (Schmid & Trevisan), 55–63
Wikispaces, 77, 163
WikiWikiWeb, viii
Wilbers, K., 31–32
Williams, Anthony D., 2
Wilson, L. R., 47
Woo, M.
on benefits of wiki, 97, 98
recommendations on wiki use in primary school, 105
word processors, 160–161
work groups, 69
working texts, 141–142
writing
collaboration process by students in wiki environment, 92–94
collaborative writing of history wiki, 134–135
English collaborative writing, 101–104
evaluation of quality of wiki collaborative texts, 94
of history, 129–130
internal German class project, 141–145
use of wiki to collaboratively write science text, 88–92
virtual preparation for history learning outside school, 132
wiki collaborative writing in primary education project, 85, 86
Wikipedia articles, student contribution to, 146–148
writing space, 90–91
www.wikimatrix.org, 162

Yu, C. T., 98, 105

www.alastore.ala.org